Preliminary test almost unbiased ridge estimator in a linear regression model with multivariate Student-t errors
نویسندگان
چکیده
In this paper, the preliminary test almost unbiased ridge estimators of the regression coefficients based on the conflicting Wald (W), Likelihood ratio (LR) and Lagrangian multiplier (LM) tests in a multiple regression model with multivariate Student-t errors are introduced when it is suspected that the regression coefficients may be restricted to a subspace. The bias and quadratic risks of the proposed estimators are derived and compared. Sufficient conditions on the departure parameter ∆ and the ridge parameter k are derived for the proposed estimators to be superior to the almost unbiased ridge estimator, restricted almost unbiased ridge estimator and preliminary test estimator. Furthermore, some graphical results are provided to illustrate theoretical results.
منابع مشابه
On the Weighted Mixed Almost Unbiased Ridge Estimator in Stochastic Restricted Linear Regression
We introduce the weighted mixed almost unbiased ridge estimator (WMAURE) based on the weighted mixed estimator (WME) (Trenkler and Toutenburg 1990) and the almost unbiased ridge estimator (AURE) (Akdeniz and Erol 2003) in linear regression model. We discuss superiorities of the new estimator under the quadratic bias (QB) and the mean square error matrix (MSEM) criteria. Additionally, we give a ...
متن کاملDifference based ridge and Liu type estimators in semiparametric regression models
We consider a difference based ridge regression estimator and a Liu type estimator of the regression parameters in the partial linear semiparametric regression model, y = Xβ + f + ε. Both estimators are analysed and compared in the sense of mean-squared error. We consider the case of independent errors with equal variance and give conditions under which the proposed estimators are superior to t...
متن کاملOn almost unbiased ridge logistic estimator for the logistic regression model
Schaefer et al. [15] proposed a ridge logistic estimator in logistic regression model. In this paper a new estimator based on the ridge logistic estimator is introduced in logistic regression model and we call it as almost unbiased ridge logistic estimator. The performance of the new estimator over the ridge logistic estimator and the maximum likelihood estimator in scalar mean squared error cr...
متن کاملAn unbiased Cp criterion for multivariate ridge regression
Mallows’ Cp statistic is widely used for selecting multivariate linear regression models. It can be considered to be an estimator of a risk function based on an expected standardized mean square error of prediction. Fujikoshi and Satoh (1997) have proposed an unbiased Cp criterion (called modified Cp; MCp) for selecting multivariate linear regression models. In this paper, the unbiased Cp crite...
متن کاملOn the Liu and Almost Unbiased Liu Estimators in the Presence of Multicollinearity with Heteroscedastic or Correlated Errors
This paper introduces a new biased estimator, namely, almost unbiased Liu estimator (AULE) of β for the multiple linear regression model with heteroscedastics and/or correlated errors and suffers from the problem of multicollinearity. The properties of the proposed estimator is discussed and the performance over the generalized least squares (GLS) estimator, ordinary ridge regression (ORR) esti...
متن کامل